CONTENTS

INTRODUCTION ... 8-1
 Background ... 8-1
 Scoping ... 8-1
 Proposals .. 8-2

METHODOLOGY ... 8-3
 Policy Guidance ... 8-3
 Assessment Methodology .. 8-6

BASELINE CONDITIONS .. 8-8
 Access Provision ... 8-8
 Local Highway Network .. 8-9
 Traffic Data ... 8-15
 Road Traffic Collision History ... 8-15
 Sustainable Transport ... 8-21

ASSESSMENT OF EFFECTS ... 8-22
 Traffic Generation ... 8-22
 Traffic and Transportation Impacts .. 8-24

MITIGATION ... 8-26

RESIDUAL EFFECTS ... 8-26

SUMMARY OF EFFECTS ... 8-26

CONCLUSIONS ... 8-26
INTRODUCTION

This Chapter considers the potential traffic and highways impacts associated with the proposed development.

Background

8.1 As noted from previous chapters to this volume, Ling Hall landfill site comprises a former sand and gravel quarry located on 90 hectares of land at Church Lawford airfield, Church Lawford near Rugby. Following a 17-year period of extraction, the quarry is now exhausted of mineral reserves and the worked out areas of the quarry are being progressively landfilled with non-hazardous waste by Veolia.

8.2 Access to the landfill site is taken via the existing site entrance off Coalpit Lane, which in turn junctions off the A45. A Section 106 agreement is in place to control vehicle routes and to prohibit lorries from routeing north-westbound on egress from the site access. Instead, vehicles are routed directly to and from the A45/A4071 junction.

8.3 The site currently operates under planning permission R16/890805 dated 14 May 1991 for “the extraction of minerals in the form of sand and gravel and to process the raw material to produce concrete aggregates, building and asphalt sands”.

8.4 Condition 53 of planning permission R16/890805 states that “no sand and gravel extraction shall take place later than the expiration of the period of 25 years beginning with the date of this permission (14th May 1991). No waste disposal operations shall take place later than the expiration of the period of 30 years beginning with the date of this permission”.

8.5 Due to a reduction in landfill inputs owing to recent economic conditions and an overall switch to a sustainable, reusable society, approximately 4 million cubic metres of void space remains at the landfill. Currently, input rates to the landfill are approximately 400,000tpa and as such would require an additional 10 years to 2031 to fill the remaining void space and allow for landfill restoration and profiling as agreed by the existing planning permission.

Scoping

8.6 As set out in Chapter 4 above a Scoping Request was submitted in October 2018 to Warwickshire County Council (WCC). The Scoping Opinion received from WCC (dated 18th June 2019) specifically addresses the reference made within the scoping report to the Street Sweeping Recycling Facility, IBA Processing Facility, and the Open Windrow Composting of Green Waste, and states that:

“should planning permission be granted for the proposed extension to the operational life of the site it is likely that these existing ancillary planning permissions would need to be linked to a new planning permission via a Section 106 agreement”.

8.7 The permissions for those operations referenced within the scoping response are listed below along with any relevant Conditions:
• Street Sweeping Recycling Facility (RBC/11CM020) currently operational:
 o Condition 3: “The road sweepings and gully arisings processing plant shall be removed from the site upon the cessation of landfill operations and the restored in accordance with the provisions of planning permission R16/890805”;

• IBA Processing Facility\(^1\) (RBC/13CM003) not currently operational:
 o Condition 4: “The incinerator bottom ash facility shall be removed from the site upon the cessation of landfill operations and the site restored in accordance with the provisions of planning permission R16/890805 or any variation or replacement of those provisions approved by the County Planning Authority”;

• Open Windrow Composting of Green Waste: (RBC/17CM021) currently operational:
 o Condition 3: “the open windrow composting facility shall be removed from the site upon cessation of landfill operations and the site restored in accordance with the provisions of planning permission R16/890805 or any subsequent restoration scheme”;

8.8 Three further developments are identified within the scoping response “which may be pertinent to the proposed development and require further thought”:

• Concrete Batching Plant: (RBC/16CM007) currently operational, operated by Breedon Southern Limited;

• Roadstone Coating (Asphalt) Plant: (RBC/16CM008) currently operational, operated by Breedon Southern Limited; and

• Solar Farm (Frame Mounted Solar PV Panels): (RBC/14CM029) implemented but not yet completed (it is not considered likely that the completed solar farm would generate any significant traffic and so it is not considered further in this chapter).

Proposals

8.9 As set out in Chapter 3 the planning application seeks permission to vary Condition 53 of the planning permission R16/890805 to continue the landfilling operations for a further 10 years, resulting in a revised closure date of 14 May 2031.

8.10 The Street Sweeping Recycling Facility and Open Windrow Composting of Green Waste would both continue to operate during this period.

8.11 By the same token, although not yet operational, the IBA Facility would also be operational during this period.

\(^1\) the IBA processing facility permitted under RBC/13CM003 is still under construction and therefore not generating operational traffic; however, documents supporting the planning application provide a trip generation forecast which will be utilised for any assessment work/calculations as necessary within this chapter
8.12 No other changes to the permission concerning the landfill would be necessary and as such operations would remain compliant with all other existing conditions imposed by the planning permission. In this respect, there would be no changes to the existing hours of operation, which are as follows:

- 07:00-18:00hrs Monday to Friday; and
- 07:00-13:00hrs on Saturdays.

METHODOLOGY

8.13 This Transport Assessment has been produced with consideration of policy guidance, guidance provided by the Institute of Environmental Management and Assessment (IEMA) in ‘Guidelines for the Environmental Assessment of Road Traffic’ (the ‘IEMA Guidelines’) and discussions with the highways authority.

Policy Guidance

8.14 The type and location of this development requires the supporting Transport chapter to give full regard to the current planning policy framework. Policy as it affects the proposal is held on several levels. National policy provides for the wider strategic aims and objectives of the transport policy and whilst not providing specific details gives general guiding principles for the implementation of new development. Local policy defines the detailed requirements for new developments in respect of transport and specific requirements for individual sites. This chapter should therefore be read alongside Chapter 5 of this volume which provides a holistic consideration of relevant planning policies.

Policy Documents

8.15 Accordingly, the following national and local planning policy guidance on the transportation and accessibility implications of the development will be considered:

- National Planning Policy Framework (March 2012, Revised February 2019);
- Warwickshire County Council Waste Development Core Strategy 2013-2028 (July 2013); and
- Warwickshire Local Transport Plan (LTP3).

National Planning Policy Framework

8.16 The NPPF sets out the Government’s planning policies for England and outlines how these are expected to be applied. Its policies replaced existing national planning statements and guidance.

8.17 Section 9 of the NPPF relates to ‘Promoting sustainable transport’ and, at Paragraph 102, notes that:

‘Transport issues should be considered from the earliest stages of plan-making and development proposals, so that:'
a) the potential impacts of development on transport networks can be addressed;
b) opportunities from existing or proposed transport infrastructure, and changing transport technology and usage, are realised – for example in relation to the scale, location or density of development that can be accommodated;
c) opportunities to promote walking, cycling and public transport use are identified and pursued;
d) the environmental impacts of traffic and transport infrastructure can be identified, assessed and taken into account – including appropriate opportunities for avoiding and mitigating any adverse effects, and for net environmental gains; and

e) patterns of movement, streets, parking and other transport considerations are integral to the design of schemes, and contribute to making high quality places’.

8.18 Paragraph 103 states that:

‘The planning system should actively manage patterns of growth in support of these objectives. Significant development should be focused on locations which are or can be made sustainable, through limiting the need to travel and offering a genuine choice of transport modes. This can help to reduce congestion and emissions, and improve air quality and public health. However, opportunities to maximise sustainable transport solutions will vary between urban and rural areas, and this should be taken into account in both plan-making and decision-making.’

8.19 The requirements for producing a Transport Statement or Assessment in support of development proposals are outlined at Paragraph 111 which notes that:

‘All developments that will generate significant amounts of movement should be required to provide a travel plan, and the application should be supported by a transport statement or transport assessment so that the likely impacts of the proposal can be assessed.’

8.20 Paragraph 109 states:

‘Development should only be prevented or refused on highways grounds if there would be an unacceptable impact on highway safety, or the residual cumulative impacts on the road network would be severe’

Warwickshire County Council Waste Development Core Strategy 2013-2028 (July 2013)

8.21 Paragraph 2.11 references the County’s existing Local Transport Plan (LTP3) and recognises that “The Waste Development Framework will need to accord with the policies and principles of the LTP3”.

8.22 In terms of transport Paragraph 3.13 states: “Warwickshire lies at the heart of Britain’s transport network with several key strategic routes passing through the County including the M6, M40, M42, M45 and M69 along with a number of key trunk routes including the A5, A45, and the A46.”

8.23 Relevant to the proposals is Figure 3.2 which shows the County Council’s advisory lorry routes; an annotated excerpt of the plan is provided below at Figure 8-1:
8.24 The plan shows that local to the site the lorry advisory routes are the A classified roads and motorways; the A45/M45, A4071 and A426

Warwickshire LTP3

8.25 Warwickshire’s third Local Transport Plan (LTP3) covers the period 2011-2026 and sets out the County Council’s Transport Strategy, providing the framework for how the transport network will be maintained and improved across the county. The plan has been produced in accordance with Department for Transport issued guidance on production of LTP’s.

8.26 The following excerpt from the document outlines the objectives of the LTP3:

“In our second Local Transport Plan (2006-11), five overarching objectives were identified for transport in the County. These have been reviewed to ensure that they remain relevant within the policy context of LTP3. The revised objectives are as follows:

Warwickshire’s Local Transport Plan 3 Objectives

1. To promote greater equality of opportunity for all citizens in order to promote a fairer, more inclusive society;

2. To seek reliable and efficient transport networks which will help promote full employment and a strong, sustainable local and sub-regional economy;

3. To reduce the impact of transport on people and the [built and natural] environment and improve the journey experience of transport users;
4. To improve the safety, security and health of people by reducing the risk of death, injury or illness arising from transport, and by promoting travel modes that are beneficial to health;

5. To encourage integration of transport, both in terms of policy planning and the physical interchange of modes;

6. To reduce transport’s emissions of carbon dioxide and other greenhouse gases, and address the need to adapt to climate change.”

8.27 The following excerpt concerns the efficient movement of freight via the county’s highways network:

“The movement of goods across the County presents a significant challenge in terms of the impact that vehicles have on our towns and villages. The majority of freight within Warwickshire is moved by road at present and this likely to continue in the future. Due to its location on the motorway and trunk road network, Warwickshire experiences a significant amount of through movement of road based freight haulage. Vehicle movements are also prominent in the vicinity of Hams Hall, Birch Coppice, Magna Park and Daventry International Rail Freight Terminal (DIRFT), and around the industrial estates in the main towns. The town centres also experience lorry movements in relation to shop deliveries. There are several quarries and landfill sites in the County that also generate large numbers of lorry movements, often impacting on some of the more rural areas”

8.28 The following excerpt discusses identified preferred routes for freight:

“The County Council has established a freight quality partnership with hauliers, and has identified routes that should be used for freight movements passing through the area. The Advisory Lorry Route map provides advice for drivers on the best available routes for heavy goods vehicles in Warwickshire, and has been widely distributed within the freight industry. It is also available on the County Council’s website”

Assessment Methodology

8.29 The assessment refers to guidance provided by the Institute of Environmental Management and Assessment (IEMA) in ‘Guidelines for the Environmental Assessment of Road Traffic’ (the ‘IEMA Guidelines’).

8.30 Traffic impacts have been assessed by undertaking a quantitative assessment of the traffic movements that would be generated by the application site during the operational phase (as an existing facility there would not be a construction phase). The impact of these traffic movements on the highway network have been assessed in terms of capacity, road safety and amenity.

8.31 The significance of these impacts has been assessed against industry standard criteria contained in the Design Manual for Roads and Bridges (DMRB) and the Institute of Environmental Management and Assessment (IEMA) Guidelines.

8.32 The IEMA Guidelines advise the following criteria is used to determine the environmental impact of the proposed development:
• Noise and Vibration – a doubling of traffic flow leads to a 3dB(A) increase in noise level, below which is deemed imperceptible to change receptors;

• Dust and Dirt – the potential effects arising from dirt and detritus being brought onto the highway, assessment is required where the increase in traffic is above 10%;

• Driver Severance and Delay – capacity assessments are required where traffic levels change by 10% or more, or where the links/junctions experience congestion in the baseline situation;

• Community Severance and Delay – the existing level of community severance is determined and the relative impact of additional traffic assessed based on a sliding scale; and

• Vulnerable Road Users and Road Safety – assessment is required where the increase in traffic is above 10%.

The assessment would determine the sensitivity of transport related impacts according to the criteria established in Table 8-1.

<table>
<thead>
<tr>
<th>Impact</th>
<th>Low</th>
<th>Sensitivity</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No sensitive receptors</td>
<td>Presence of sensitive receptors</td>
<td>Presence of sensitive receptors adjacent to the road</td>
</tr>
<tr>
<td>Noise & Vibration</td>
<td>Limited presence of sensitive receptors</td>
<td>Low to medium presence of sensitive receptors</td>
<td>High presence of sensitive receptors</td>
</tr>
<tr>
<td>Dust & Dirt</td>
<td>Road network not affected</td>
<td>Road network not experiencing congestion at peak times</td>
<td>Road network experiencing congestion at peak times</td>
</tr>
<tr>
<td>Community Severance & Delay</td>
<td>Moderate to high baseline traffic flows / presence of existing severance</td>
<td>Moderate baseline traffic flows / presence of existing severance</td>
<td>Low baseline traffic flows / no presence of existing severance</td>
</tr>
<tr>
<td>Vulnerable Road Users</td>
<td>N/A</td>
<td>Limited presence of vulnerable road users</td>
<td>Presence of vulnerable road users</td>
</tr>
<tr>
<td>Road Safety</td>
<td>N/A</td>
<td>No existing safety risk</td>
<td>Existing safety risk</td>
</tr>
</tbody>
</table>

8.33 The magnitude of effects can be determined as shown in Table 8-2.

<table>
<thead>
<tr>
<th>Impact</th>
<th>Negligible</th>
<th>Minor</th>
<th>Moderate</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise & Vibration</td>
<td><99% increase in traffic i.e. a doubling of traffic flow</td>
<td>Quantitative assessment based on predicted increase in traffic against measured baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dust & Dirt</td>
<td>No off-road vehicle movements / no loose material transport</td>
<td>Qualitative assessment based on type of traffic generated, materials transported and traffic speeds through sensitive areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driver Severance & Delay</td>
<td><10% increase in traffic</td>
<td>Quantitative assessment of road capacity based on existing traffic flows and predicted future traffic levels</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.34 The sensitivity and magnitude of each impact are combined to determine the significance, from which the need for mitigation can be identified. The significance definitions are detailed in Table 8-3 below. In terms of the EIA Regulations, a ‘Moderate/Substantial’ and ‘Substantial’ effect are taken as being a ‘significant’ effect (shown highlighted in bold text below).

<table>
<thead>
<tr>
<th>Impact</th>
<th>Magnitude</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Severance & Delay</td>
<td>Negligible</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td><10% increase in traffic</td>
<td>Negligible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td><30% increase in traffic</td>
<td>Slight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>>60% increase in traffic</td>
<td>Slight/Moderate</td>
</tr>
<tr>
<td>Vulnerable Road Users</td>
<td>Minor</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td><10% increase in traffic</td>
<td>Slight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Qualitative assessment of existing provision and future traffic levels</td>
<td>Slight/Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High</td>
</tr>
<tr>
<td>Road Safety</td>
<td>Major</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td><10% increase in traffic</td>
<td>Slight/Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Quantitative assessment of existing accident records and predicted increases in traffic</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High</td>
</tr>
</tbody>
</table>

Table 8-3

Significance Matrix

<table>
<thead>
<tr>
<th>Magnitude</th>
<th>Sensitivity</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible</td>
<td>Low</td>
<td>Negligible</td>
</tr>
<tr>
<td>Minor</td>
<td>Low</td>
<td>Slight</td>
</tr>
<tr>
<td>Moderate</td>
<td>Low</td>
<td>Slight/Moderate</td>
</tr>
<tr>
<td>Major</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>Moderate/Substantial</td>
</tr>
</tbody>
</table>

BASELINE CONDITIONS

Access Provision

8.35 Access to the landfill site is taken from the existing site entrance off Coalpit Lane, which in turn junctions off Lawford Heath Lane, accessible from the strategic highways network via the A45.

8.36 Figure 8-2 comprises satellite imagery taken from Google Maps\(^2\) depicting the site access junction with Coalpit Lane.

\(^2\) Imagery © 2019 Getmapping plc, Infoterra Ltd & Bluesky, Maxar Technologies, Map data© 2019
8.37 The junction itself covers a wide area sufficient to manoeuvre HGV's without difficulty, including a 3 metre wide ghost right turn lane on approach from the south. The access road has a kerbed splitter island 10 metres in length located 3 metres back from the give way line. The corner radius on egress to the south (toward the A45 intersection) is markedly generous enabling HGV's to egress onto Coalpit Lane with ease.

8.38 Security gates are set back approximately 33 metres from the Coalpit Lane carriageway and measure 7.5 metres between the gate posts; the site access road measures 8 metres in width beyond the security gating.

8.39 Visibility splays on egress of the access junction were reviewed in accordance with the Design Manual for Roads & Bridges TD42/95 Geometric Design of Major/Minor Priority Junctions and TD9/93 Highway Link Design. Coalpit Lane is a rural two-way road with relatively low vehicle speeds. The review was therefore based on design speeds of 70kph, and therefore a minimum visibility splay requirement of 120 metres in either direction. On-site audits indicate that adequate visibility was achievable in both directions, meeting these guidelines.

Local Highway Network

8.40 The local highway network (beyond the site access) as relevant to the proposals comprises of Coalpit Lane, Lawford Heath Lane, the A45 London Road, and to a lesser extent, the A4701 and B4453. Two roundabout junctions have also been discussed owing to their relevance in terms of highway safety: the A4701/B4642 roundabout junction, and the A45/B4429/M45 roundabout junction.

Coalpit Lane

8.41 The carriageway bearing south is of a generous width at around 10 metres. No pedestrian footway or street lighting is provided, and the national speed limit applies. The grassed verge is traversable.
in places; however it is considered unlikely that it would be used frequently by pedestrians given the lack of streetlighting and general character of the surroundings. Coalpit Lane junctions with Lawford Heath Lane at a location some 135 metres south-east from the site access junction. There is a 7.5t HGV restriction signed on at the Coalpit Lane junction, preventing HGVs using this road except to access the application site and surrounding development.

8.42 Figure 8-3 comprises satellite imagery taken from Google Maps depicting the Coalpit Lane junction with Lawford Heath Lane.

Figure 8-3
Coalpit Lane Junction with Lawford Heath Lane

8.43 The junction with Lawford Heath Lane benefits from excellent visibility on egress from Coalpit Lane owing to the relative alignment of the two roads. The Lawford Heath Lane carriageway measures around 11 metres in width at a point perpendicular with the centre of the Coalpit Lane give way line which itself measures 23 metres, affording a generous area for HGV’s to manoeuvre comfortably through the junction regardless of their route.

Lawford Heath Lane

8.44 Bearing north-east from the Coalpit Lane junction, the carriageway narrows to around 5.7 metres; bearing south-east from the junction the carriageway narrows to around 6.5 metres. Bearing south-east, Lawford Heath Lane junctions with the A45 eastbound slip road at a point approximately 600 metres from the Coalpit Lane junction. Signage warning drivers of the presence of the Coalpit Lane junction is visible on approach from the south; it is located along Lawford Heath Lane circa 225 metres in advance of the Coalpit Lane junction.

3 Imagery © 2019 Getmapping plc, Infoterra Ltd & Bluesky, Maxar Technologies, Map data© 2019
8.45 Figure 8-4 comprises satellite imagery taken from Google Maps which shows the area in which the abovementioned roads intersect with the A45.

![Figure 8-4 A45 London Road Junction Overview](image)

A45 London Road

8.46 The A45 London Road comprises a dual carriageway A-Class road operating two lanes in either direction with speed restricted to 60mph in vicinity of junction. The A45 London Road bearing west from its junction with Lawford Heath Lane leads toward Coventry some 13km to the north-west, while bearing east from the same junction the A45 London Road becomes the A45 and bears around 20km south-east toward Northampton. The A45 Coventry Road gives way to the M45 at a junction with the B4429 for approximately 2.7km; from this point the M45 then continues east while the A45 resumes its course as Daventry Road, bearing south-east toward a junction with the M1 east of Daventry.

A4701

8.47 The A4701 comprises a single carriageway A-Class road operating one lane in either direction with speed restricted to 50mph. The A4701 bears north-east for around 6.6km terminating approximately 1.6km north of central Rugby at a roundabout junction with the B4112. The A4701 affords access to A426 which bisects Rugby in a north-to-south alignment.

B4453

8.48 The B4453 junctions with westbound A45 London Road and also with A4071 to the south of the A45, bears south-west for 15km junctioning en route with the A423 at a location approximately 5.2km from the A45 before continuing bearing south-west. It terminates at a junction with Lillington Road in the vicinity north of Royal Leamington Spa.

4 Imagery © 2019 Getmapping plc, Infoterra Ltd & Bluesky, Maxar Technologies, Map data © 2019
Roundabout Junctions

A4701/ B4642

8.49 Located approximately 1.5km east of the application site (2.3km by road), the A4071 forms a roundabout junction with the B4642 Coventry Road. The northern arm affords links to the M6 and M1 via the B4112 and A46 while the eastern arm (B4642 Coventry Road) bears north-east into central Rugby. Traffic associated with the application site may require to route through this junction in order to access the M6 or M1; it is considered unlikely that vehicles would route via the B4642 Coventry Road.

8.50 Figure 8-5 comprises satellite imagery taken from Google Maps\(^5\) which provides an overview of the A4701/ B4642 roundabout junction.

Figure 8-5
A4701/B4642 Roundabout Junction Overview

8.51 The road surface on approach to the roundabout junction, and comprising the circulatory carriageway, is wide level and in a good state of repair, and the junction as a whole is comprehensively lit. Visibility across the junction is of a high standard on approach from all arms; additionally each arm benefits from a splitter island dividing lanes of ingress and egress each of which features an illuminated bollard augmented with white-on-blue directional arrows visible on approach.

A45/B4429/M45

8.52 Located approximately 2.0km south-east of the application site the A45 Coventry Road forms a roundabout junction with the B4429 Coventry Road and the M45. The northern arm, comprising

\(^5\) Imagery © 2019 Getmapping plc, Infoterra Ltd & Bluesky, Maxar Technologies, Map data© 2019
the continuation of Coventry Road as the B4429 immediately bears east, loosely following the alignment of the M45 for approximately 2.7km before diverting south-east and giving way to the A45 Daventry Road.

Figure 8-6
A45/B4429/M45 Roundabout Junction Overview

8.53 Figure 8-6 comprises satellite imagery taken from Google Maps\(^6\) which provides an overview of the A45/B4429/M45 roundabout junction.

8.54 Visible in the above figure, lateral yellow lines are painted across the carriageway on the approach lanes of both the A45 Coventry Road and the M45. The lines act as a means to make drivers aware of their speed in an effort to reduce speeding on approach to the roundabout junction, thereby reducing road traffic accidents. As discernible within the photograph, the distance between the lines reduces on approach to the give way line of the roundabout junction. Placement of the lines commences at a distance circa 450 metres in advance of the give way line on either approach.

8.55 The central island is elliptical measuring approximately 120 by 80 metres. The circulatory carriageway is sufficiently wide to accommodate two lanes of traffic and visibility is available to a high standard at all points; additionally streetlighting is installed at regular intervals across the junction providing comprehensive illumination of the entire area.

HGV Routeing

8.56 A Section 106 agreement is in place to controlling HGV routeing associated with the site. The most recent version, dated 17\(^{th}\) April 2018, is an agreement between Warwickshire County Council and Veolia ES Landfill Limited which is consistent with previously routeing restrictions. The S106 Agreement states that:

\(^6\) Imagery © 2019 Getmapping plc, Infoterra Ltd & Bluesky, Maxar Technologies, Map data© 2019
‘All heavy goods vehicles shall only enter the Site via the Main Entrance using a right turning manoeuvre;

All heavy goods vehicles leaving the Site shall only do so via the Main Entrance using a left turning manoeuvre;

Save where necessary to obtain access to sites and properties located off the roads identified below for waste collection purposes no heavy goods vehicles associated with the Development and travelling to or from the Site shall be permitted to travel along the following roads:

Coalpit Lane to the north west of the main entrance (as shown coloured blue on the attached Plan A) and

Lawford Heath Lane (as shown coloured green on the attached Plan A)’.

8.57 Plan A is shown at Figure 8-7.

Figure 8-7
S106 Agreement Prohibited Routes – Plan A

8.58 The S106 Agreement then provides details of implementation and enforcement procedures.

8.59 In view of the above restrictions all HGVs must route directly to and from the A45/A4071 junction.
Traffic Data

8.60 Given that historically there have been higher movements of vehicles generated by the application site, it has been deemed that no off-site assessment of impact would be required. Therefore no traffic count data has been obtained.

Road Traffic Collision History

8.61 The following section comprises an analysis of the personal injury accident data set provided by WCC. The purpose of the analysis is to establish whether any of the road traffic incidents occurring in relevant proximity of the application site within the most recent 60 month (5 year) period occurred as a result of a highways deficiency as opposed to human error (driver, rider, pedestrian etc).

8.62 Details of recorded road traffic incidents were requested from WCC for the period 1st January 2014 to 14th October 2019, the most recent five-year period available on record. The data were received via email in a report format providing details of each recorded incident. Details include: the time, date, and location of the incident; general conditions at the time/location of the incident; a description of the course of events as recorded by the attending officer; and categorisation of any resultant casualty by severity, as defined below.

8.63 Casualty severity definitions:

- **Fatal** - an incident resulting in one or more fatalities;
- **Serious** - an incident resulting in detention in hospital; injuries may include paralysis, fractures and severe lacerations; and
- **Slight** - an incident resulting in minor injuries such as whiplash, sprains and minor lacerations.

8.64 The lengths of highway considered in the analysis are identified within the following Figure 8-8, comprising an annotated map of the area local to the application site.
Owing to the large survey area and 5 year timescale, the data set provided by WCC comprises 46 road traffic incidents, of which: 3 incidents resulted in fatality, 9 incidents resulted in serious injury, and 34 incidents resulted in slight injury.

In the interests of providing a concise and relevant analysis of the data set, the incidents have been divided into the following five categories for discussion:

- fatal incidents;
- serious incidents;
- incidents involving large vehicles (HGV’s, agricultural vehicles etc);
- incidents involving vulnerable road users (motorcycles, pedal cycles, and pedestrians); and
- remaining incidents i.e. those which fall outside the above categories.

Fatal Incidents

Three of the 46 incidents (incident nos. 25, 30, and 31) resulted in fatality and are discussed below to ascertain the presence of any highways deficiency at each location.

WCC incident no. 25 occurred in November 2015 during daylight hours with weather recorded as ‘fine’; the road surface was recorded as ‘wet damp’. The incident occurred along the B4642...
Coventry Road around 300 metres east from its roundabout junction with the A4071, and involved two vehicles resulting in eight casualties; it is not known how many of the casualties were fatal.

8.69 Unfortunately, the incident description within the data set is incomplete; however, this is not entirely uncommon within road collision data sets. The entire description states:

“V001 travelling west at location and on negotiating a slight right hand bend driver has lost control of vehicle causing it to travel”

8.70 The movements of the vehicles involved indicate that the vehicles were travelling in opposing directions along the road, as such it is likely, given the fatal nature of the injuries, that the incident comprised a head-on collision. The road at the location is relatively straight and subject to a 40mph speed restriction, additionally there are dual solid white lines dividing the opposing lanes, prohibiting overtaking. The area is well lit and reflective bollards line either side of the carriageway. It is not considered that a driver observing the speed limit and road markings, and driving with an appropriate level of care and attention would be likely to stray into the oncoming lane; nothing within the incident report is suggestive of a highways deficiency at the location.

8.71 WCC incident no. 30 occurred in June 2019 during daylight hours with weather recorded as ‘fine’; the road surface was recorded as ‘wet/damp’. The incident occurred along the B4453 Straight Mile around 50 metres east of the access to the retail park off the northern edge of the carriageway.

8.72 The incident description within the data set reads:

“Vehicle one has been travelling along the B4453 Straight Mile in the direction of Frankton. It has then left the road on the offside and colliding with a tree. Consequently the driver, any sole occupant of the vehicle has sustained fatal injuries.”

8.73 WCC incident no. 31 occurred in August 2019 after dark with weather recorded as ‘fine’ and road surface recorded as ‘dry’. The incident occurred along the B4453 Straight Mile around 85 metres east of the access to the retail park off the northern edge of the carriageway.

8.74 The incident description within the data set reads:

“Vehicle 1 is believed to be travelling from Bourton towards A45 on B4453. Appears to have lost control of vehicle and collided on nearside with a tree confirmed fatal at scene.”

8.75 Minor spelling and punctuation errors within the above descriptions have been rectified, with care taken not to alter the narratives of the descriptions; the descriptions can be found un-altered within Appendix 8/1 of this chapter.

8.76 The events of the above two incidents are remarkably similar; both incidents occurred on the same stretch of road and it appears that in each case the respective driver has lost control of their vehicle resulting in a collision with a tree. However, while there are similarities, the vehicles were travelling in opposing directions and did not occur in the exact same location; as such there is not considered to be a common cause, and the similarities between the incidents are concluded to be no more than coincidence.
8.77 In consideration of the highway in the vicinity of the incidents it is noted that the road at the location is wide, straight, and level with good visibility, well lit, and subject to a 50mph speed restriction. It is not considered that a driver observing the speed limit and road markings, and driving with an appropriate level of care and attention would be likely to lose control of their vehicle. Nothing within either incident report is suggestive of a highways deficiency at the location.

Serious Incidents

8.78 Nine of the 46 incidents resulted in injuries categorised as ‘Serious’. The incidents have been analysed on an individual basis, and cross referenced where appropriate, to ascertain the presence or otherwise of a highways deficiency at each respective location.

8.79 The following Table provides a brief summary of each of the incidents and a likely causation factor based on the available information.

<table>
<thead>
<tr>
<th>WCC Incident no.</th>
<th>Brief description of incident with likely causation factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Cyclist is travelling through a roundabout junction, a vehicle enters the junction and collides with the rear of the cyclist; failure to look properly/driving without due care and attention.</td>
</tr>
<tr>
<td>8</td>
<td>Motorcyclist attempts to overtake a car and misjudges manoeuvre/car driver pulls out unexpectedly, motorcycle collides with rear of car and rider is thrown from the motorcycle; failure to look properly/poor turn or manoeuvre.</td>
</tr>
<tr>
<td>11</td>
<td>Car enters westbound carriageway of A45 from the B4453 Straight Mile slip road and collides with a motorcycle which in turn collides with a second motorcycle; failure to look properly/driving without due care and attention/excessive speed (motorcycle).</td>
</tr>
<tr>
<td>21</td>
<td>Ice cream van emerges from junction and collides with a car travelling in the near lane pushing the car into the oncoming lane resulting in collision with a third vehicle; failure to look properly/poor turn or manoeuvre.</td>
</tr>
<tr>
<td>22</td>
<td>Cyclist is participating in a time trial event and loses control rounding a bend; travelling too fast for conditions.</td>
</tr>
<tr>
<td>24</td>
<td>Motorcyclist is travelling south toward roundabout junction, loses control negotiating the junction; potentially travelling too fast for conditions.</td>
</tr>
<tr>
<td>29</td>
<td>Two vehicles are approaching the junction of an on-slip, the lead vehicle moves to the right lane to allow for a joining vehicle, braking in the process, the following vehicle collides with the rear of the lead vehicle; poor turn or manoeuvre/following too close.</td>
</tr>
<tr>
<td>41</td>
<td>Motorcyclist emerges from a junction turning right and into the path of an oncoming vehicle; failure to look properly.</td>
</tr>
<tr>
<td>45</td>
<td>Motorcyclist loses control while exiting roundabout junction; potentially travelling too fast for conditions/loss of control.</td>
</tr>
</tbody>
</table>

8.80 It is not considered that any of the above mentioned incidents occurred as a result of a highways deficiency at any of the respective locations of the incidents and it is considered reasonable to conclude that all 9 incidents are attributable to human error.

Incidents Involving Large Vehicles

8.81 Six of the 46 incidents involved Large Vehicles, of which five were HGV’s; one was recorded as an Agricultural Vehicle with no details available to further define its size or type. The incidents have
been analysed on an individual basis, and cross referenced where appropriate, to ascertain the presence or otherwise of a highways deficiency at each respective location.

8.82 The following Table provides a brief summary of each of the incidents and a likely causation factor based on the available information (incident no. 21 has already been discussed within the section relating to serious incidents).

Table 8-5
Large Vehicle Incident Summary

<table>
<thead>
<tr>
<th>WCC Incident no.</th>
<th>Brief description of incident with likely causation factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Motorcyclist attempts to overtake delivery vehicle as it turns into farm access and collides with back of vehicle; following too close/failure to look properly/poor turn or manoeuvre/failure to judge other persons path or speed.</td>
</tr>
<tr>
<td>13</td>
<td>HGV parked in a layby pulls onto carriageway and into the path of vehicle; failure to look properly/careless reckless in a hurry.</td>
</tr>
<tr>
<td>20</td>
<td>Car travelling south-west loses control on a bend and collides with an agricultural vehicle travelling north-east; loss of control.</td>
</tr>
<tr>
<td>34</td>
<td>HGV travelling south-east on A45 loses control and leaves carriageway colliding with central reservation; loss of control/other.</td>
</tr>
<tr>
<td>43</td>
<td>LGV overtakes HGV before braking hard to make a left turn into a junction, HGV unable to avoid collision; driving without due care or attention/dangerous driving.</td>
</tr>
</tbody>
</table>

8.83 It is not considered that any of the above mentioned incidents occurred as a result of a highways deficiency at any of the respective locations of the incidents and it is considered reasonable to conclude that all 6 incidents are attributable to human error.

Incidents Involving Vulnerable Road Users

8.84 Thirteen of the 46 incidents involved Vulnerable Road Users, of which nine were motorcyclists and four were pedal cyclists. The incidents have been analysed on an individual basis, and cross referenced where appropriate, to ascertain the presence or otherwise of a highways deficiency at each respective location.

8.85 The following Table provides a brief summary of each of the incidents and a likely causation factor based on the available information (incident nos. 7, 8, 10, 11, 22, 24, 41 & 45 have already been discussed within previous sections).

Table 8-6
Vulnerable Road User Incident Summary

<table>
<thead>
<tr>
<th>WCC Incident no.</th>
<th>Brief description of incident with likely causation factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Moped rider loses control of vehicle whilst driving over a drain cover; loss of control/potentially travelling too fast for conditions (wet road surface).</td>
</tr>
<tr>
<td>17</td>
<td>Car overtakes pedal cyclist on approach to a roundabout junction, coming to a stop at the give way line, pedal cycle collides with rear of car; careless reckless in a hurry/passing too close to vulnerable road user.</td>
</tr>
<tr>
<td>33</td>
<td>Cyclist is travelling through a roundabout junction, a vehicle enters the junction and collides with the rear of the cyclist; failure to look properly/driving without due care and attention.</td>
</tr>
<tr>
<td>38</td>
<td>Motorcyclist loses control on approach to junction colliding with offside kerb; loss of control/potentially travelling too fast for conditions (wet road surface).</td>
</tr>
</tbody>
</table>
8.86 It is not considered that any of the above mentioned incidents occurred as a result of a highways deficiency at any of the respective locations of the incidents and it is considered reasonable to conclude that all thirteen incidents are attributable to human error.

8.87 It is also noted that cyclists often neglect to wear high visibility clothing and/or equip their cycles with lights, without information pertaining to this within a data set it is difficult to accurately extrapolate the cause of an incident involving a cyclist.

Remaining Incidents

8.88 Twenty-four of the 46 incidents within the data set resulted in only minor or ‘Slight’ injury and did not involve either large vehicles or vulnerable road users. Such incidents are common on busy roads and are generally not suggestive of the presence of a highways deficiency.

8.89 Notwithstanding, each incident has been examined on an individual basis to ascertain the presence or otherwise of a highways deficiency at each location.

8.90 The following Table provides a brief summary of each of the incidents and a likely causation factor based on the available information.

<table>
<thead>
<tr>
<th>WCC Incident no.</th>
<th>Brief description of incident with likely causation factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rear shunt between 2no. vehicles; failure to brake in good time/following too close.</td>
</tr>
<tr>
<td>2</td>
<td>Stolen vehicle involved in high speed pursuit; loss of control rounding a bend.</td>
</tr>
<tr>
<td>4</td>
<td>Vehicle collides with illuminated bollard; potential loss of control/driving without due care or attention.</td>
</tr>
<tr>
<td>5</td>
<td>Rear shunt between 2no. vehicles; failure to brake in good time.</td>
</tr>
<tr>
<td>6</td>
<td>Vehicle mis-judges exit from A4071, mounts off-side kerb and collides with road sign; potential driving without due care or attention.</td>
</tr>
<tr>
<td>9</td>
<td>Vehicle collides with bollard, leaves carriageway and collides with tree; potential loss of control/driving without due care or attention.</td>
</tr>
<tr>
<td>12</td>
<td>Minor collision between two vehicles, driver failed to stop for exchange of details; potential loss of control/driving without due care or attention.</td>
</tr>
<tr>
<td>14</td>
<td>Rear shunt between 2no. vehicles; failure to brake in good time/following too close.</td>
</tr>
<tr>
<td>15</td>
<td>Vehicle fails to give way at junction resulting in collision; failure to look properly/careless, reckless, in a hurry.</td>
</tr>
<tr>
<td>16</td>
<td>Vehicle fails to give way at junction resulting in collision; failure to look properly/careless, reckless, in a hurry.</td>
</tr>
<tr>
<td>18</td>
<td>Vehicle fails to give way at junction resulting in collision; failure to look properly/careless, reckless, in a hurry.</td>
</tr>
<tr>
<td>19</td>
<td>Rear shunt between 2no. vehicles; failure to brake in good time/following too close.</td>
</tr>
<tr>
<td>23</td>
<td>Vehicle fails to give way resulting in collision; failure to look properly/careless, reckless, in a hurry.</td>
</tr>
<tr>
<td>26</td>
<td>Rear shunt between 2no. vehicles; failure to brake in good time/following too close.</td>
</tr>
<tr>
<td>27</td>
<td>Loss of control due to epileptic fit.</td>
</tr>
</tbody>
</table>
WCC Incident no. | Brief description of incident with likely causation factor
--- | ---
28 | Driver swerves to avoid hitting an animal, leaves carriageway, collides with trees/bushes; potential loss of control/driving without due care or attention.
32 | Stolen vehicle involved in high speed pursuit; loss of control rounding a bend.
35 | Vehicle emerges from a junction turning right and into the path of an oncoming vehicle; failure to look properly.
36 | Vehicle fails to give way at junction resulting in collision; failure to look properly/careless, reckless, in a hurry.
37 | Rear shunt between 2no. vehicles; failure to brake in good time/ following too close.
39 | Vehicle driving in thick fog misjudges approach to roundabout junction and mounts central island; driving too fast for conditions/careless, reckless, in a hurry.
40 | Vehicle fails to give way at junction resulting in collision; failure to look properly/careless, reckless, in a hurry.
42 | Rear shunt between 2no. vehicles; poor judgement/following too close.
46 | Rear shunt between 2no. vehicles; failure to brake in good time/ following too close.

8.91
Nothing within the incident records suggest a highway deficiency as a cause, and it is considered that all 24 incidents occurred as the result of human error. The incident records are included 'as received' within Appendix 8/1.

Summary
8.92 Each of the incidents comprising the report provided by WCC have been examined on an individual basis to ascertain the presence or otherwise of a highways deficiency at each location. It has been concluded that all of the 46 incidents are reasonably attributable to human error or factors beyond the control of the driver/rider (e.g. incident 27 occurred as a result of an epileptic fit suffered by the driver of the vehicle) and no incident record or description therein contained information suggestive or demonstrative of the presence of a highways deficiency at any location.

Sustainable Transport
8.93 The following section appraises the site in terms of staff accessibility by various modes of transportation with a predilection toward sustainable transport options and the reduction of the use of private motor vehicles.

Pedestrian Accessibility
8.94 Pedestrian accessibility to the application site is limited due to the lack of footway and streetlighting along Coalpit Lane. Whilst the road does benefit from traversable grass verges along the majority of its length, the location and nature of the area coupled with the lack of street lighting and footway are not conducive to safe commuting on foot over any great distance, and as such pedestrian access is not considered a reasonable option.

8.95 It is also considered unlikely that staff or visitors associated with the proposals would normally seek to travel on foot to the site, they are more likely to drive or car share.
Cycle Accessibility

8.96 It is considered unlikely that many staff would elect to cycle to work from residential areas in the vicinity given the general character of the area and distances involved; notwithstanding the potential for travel by cycle within the area has been reviewed in the interests of a thorough assessment.

8.97 For the purposes of cycle accessibility, a 5km radius is considered an acceptable benchmark. The outskirts of Rugby lie within the 5km radius along with several villages and hamlets.

8.98 In terms of cycle infrastructure, there are no official routes within immediate proximity of the application site. It is considered that the roads are wide enough and have sufficient visibility to safely accommodate cyclists. It is also reasonable to assume that cyclists using the local highways would equip their cycles with lights and wear appropriate safety gear, e.g. crash helmet, high visibility/reflective clothing.

Public Transport Access - Bus

8.99 Bus accessibility is measured by reference to the number and frequency of services available within easy walking distance which is considered to be 400 metres in the case of a regular daily commute, although distances greater than this may be considered on the individual merits of a location.

8.100 It has been established that no comprehensive bus services operate within relevant proximity of the site.

Public Transport Access - Rail

8.101 The nearest rail link to the site is offered by Rugby Rail Station which is located approximately 10km by road from the site, which is far beyond accepted distances for walking or cycling. In consideration of the lack of bus routes between the rail station and the site, rail cannot be considered as a realistic mode of transport in terms of accessing the landfill.

Summary

8.102 In consideration of the above audit there is limited potential for staff to walk or cycle to the site, and little or no potential to use public transport to get to work. The site is in an accessible location in terms of car usage and it is deemed that this remains the most practical option.

ASSESSMENT OF EFFECTS

Traffic Generation

8.103 The applicant proposes to extend the life of Ling Hall landfill site for a further 10 years, resulting in a revised closure date of 14 May 2031. The Street Sweeping Recycling Facility and Open Windrow Composting of Green Waste would both continue to operate during this period. By the same token, although not yet operational, it has been assumed that the IBA Facility would also operate during this period.
8.104 Therefore, the site is an existing landfill facility and no changes to the site are required. The proposals would result in no increase in trip generation, and traffic volumes are actually expected to reduce compared to historical figures given the cessation of activities at the quarry in 2009.”

Existing Trip Generation

8.105 Table 8-8 below summarises the existing situation in terms of HGV trip generation, giving the existing trip generation or estimated forecast as appropriate, and additionally specifies the source of the figures.

8.106 The left hand column lists those developments which are either operational, under construction, or otherwise mentioned within the WCC Scoping Response, along with the relevant planning application number.

8.107 In the interests of clarity, a ‘trip’ comprises two ‘movements’ i.e. one inbound movement and one outbound movement.

Table 8-8

Existing Traffic Generation Summary

<table>
<thead>
<tr>
<th>Concern / Application Number</th>
<th>Status</th>
<th>Source of figures</th>
<th>Daily Trip Generation / Forecast (11hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landfill R16/890805</td>
<td>operational</td>
<td>Weighbridge data (2019)</td>
<td>102 trips (204 movements)</td>
</tr>
<tr>
<td>Road Sweepings Processing Facility RBC/11CM020</td>
<td>operational</td>
<td>RBC/11CM020 Planning Application Supporting Statement (Veolia), Section 2.2</td>
<td>11 trips (22 movements)</td>
</tr>
<tr>
<td>Open Windrow Composting of Green Waste RBC/17CM021</td>
<td>operational</td>
<td>RBC/17CM021 Noise Report (SLR), Section 5.4</td>
<td>11 trips (22 movements)</td>
</tr>
<tr>
<td>Concrete Batching Plant RBC/16CM007</td>
<td>operational</td>
<td>RBC/14CM029 Solar Farm T&AA (Hyrock), Paragraph 3.1.5</td>
<td>39 trips (78 movements) combined</td>
</tr>
<tr>
<td>Roadstone Coating (Asphalt) Plant RBC/16CM008</td>
<td>operational</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBA Facility RBC/13CM003</td>
<td>under construction</td>
<td>RBC/13CM003 Planning Application Supporting Statement (Veolia), Section 3.6</td>
<td>NIL Forecast: 22 trips (44 movements)</td>
</tr>
<tr>
<td>Frame Mounted Solar PV Panels (Solar Farm) RBC/14CM029</td>
<td>under construction</td>
<td>RBC/14CM029 Solar Farm T&AA (Hyrock), Paragraph 4.5.1</td>
<td>NIL Forecast: negligible</td>
</tr>
</tbody>
</table>

Total Operational Trips

163 trips (326 movements)

Total Trips Including Forecasted

185 trips (370 movements)

8.108 Table 8-8 shows that the existing operational concerns which comprise the application site generate approximately 163 trips (326 movements) per day. It is noted that the Transport Assessment for
The Solar Farm application estimated HGV trips for the landfill to be 44; this is on the low side. Based on weighbridge data for the first three quarters of 2019, HGV loads have been closer to 100 per day on average, which has been exacerbated due to incinerator shut downs and several large contracts where soils have been imported for restoration works.

8.109 Those developments whose permissions have been granted and implemented but remain in the construction stage, specifically the IBA Facility, has been forecasted to generate 22 trips (44 movements), bringing the total future trip generation of the site to 185 trips (370 movements). Notwithstanding this, historically the landfill site has attracted between 90 and 130 loads per day (180 to 260 two-way movements).

8.110 The Solar Farm once operational will require minimal maintenance and therefore trip generation will be negligible in the wider context of the site.

8.111 In the context of an 11hr day 163 trips would equate to 15 trips/30 movements per hour, or 1 trip/2 movements every 2 minutes.

Proposed Trip Generation

8.112 The proposals would not result in an increase in the level of total or HGV traffic movement.

Traffic and Transportation Impacts

8.113 Based on the above background conditions, existing site operation and forecasted operation levels, the following considers the environmental impacts of the proposed application.

Noise and Vibration

8.114 The IEMA Guidelines state that the variation of +/-3dB(A) represents the minimum perceptible change in noise to nearby receptors, which is typically produced by a doubling or halving of traffic flow.

8.115 The proposals do not seek to increase the level of vehicular traffic over and above that currently permitted. The level of sensitivity is therefore considered to be low.

8.116 The proposed level of development traffic would lead to no perceptible change in noise or vibration along any link within the study area road network during hours of operation. The magnitude of the proposed development traffic impact on noise and vibration would therefore be negligible.

8.117 The Impact Significance for noise and vibration is therefore negligible.

Dust and Dirt

8.118 The sensitivity to the impact of dust and dirt is based upon the proximity of sensitive receptors to the roadside. The IEMA Guidelines state that

“problems with dust and dirt are unlikely to occur at distances greater than 50m from the road”. The site access is not located within 50m of any sensitive receptors, and there is direct access to the strategic road network. As such the sensitivity is considered to be low.
8.119 The IEMA Guidelines explain that the impact of dust and dirt would depend, to a large extent, upon the management practices undertaken on site. This includes the washing down of wheels and sheeting of material during transport on the public highway. This assessment determines the level of impact generated by the proposed development under the assumption that no management practices are undertaken.

8.120 The proposals would not result in any additional HGV movement over and above that currently permitted. Further to this the site currently undertakes regular wheel washing and (where appropriate) sheeting. The magnitude of the impact of dust and dirt throughout the study area road network is therefore negligible and the impact significance of impact would be negligible.

Driver Severance and Delay

8.121 The local road layout provides direct vehicular access to the strategic road network without passing through any areas sensitive to traffic. The level of sensitivity is therefore considered to be low.

8.122 The increase in traffic levels is zero and therefore within 10% and is therefore considered to be negligible in terms of magnitude. On this basis it is concluded that the impact significance to driver severance and delay would be negligible.

Community Severance & Delay

8.123 The local road layout provides direct vehicular access to the strategic road network without passing through any areas sensitive to traffic. The level of sensitivity is therefore considered to be low.

8.124 The increase in traffic levels is zero and therefore within 10% and is therefore considered to be negligible in terms of magnitude. On this basis it is concluded that the impact significance to community severance & delay would be negligible.

Vulnerable Road Users

8.125 The site is located in an area where there is a relatively low level of pedestrian and cycle movement. The HGV route has a short and direct link with the strategic road network. Therefore the level of sensitivity would be medium.

8.126 The proposed increase in traffic above the permitted levels is zero and would therefore be considered negligible in terms of magnitude.

8.127 On this basis it is concluded that the impact significance to vulnerable road users would be slight.

Road Safety

8.128 The severity, conditions and causation factors have been reviewed for each of the historic traffic incidents recorded within the study area. It is the conclusion of this report that no highway deficiency exists within relevant proximity of the application site entrance or surrounding highway infrastructure. The level of sensitivity is therefore considered to be medium.

8.129 Given that the proposal would not result in any increase to the approved two-way movements, and their distribution, there is unlikely to be any change that may now or in the future pose a
detrimental effect upon highway safety in the vicinity. The magnitude of effects is therefore considered to be negligible.

8.130 On this basis it is concluded that the impact significance to road safety would be slight.

MITIGATION

8.131 The applicant currently operates a number of existing mitigation measures which would continue to effectively minimise the traffic impacts of the site. This includes a restriction to the hours of operation (07:00-18:00hrs Monday to Friday and 07:00-13:00hrs on Saturdays).

8.132 It is the conclusion of this assessment that that there are currently no issues in terms of highway safety or operation within relevant proximity of the application site entrance or surrounding highway infrastructure.

8.133 On the basis that the proposed application does not seek to increase the level of traffic over that currently permitted there are no other additional mitigation measures proposed.

RESIDUAL EFFECTS

8.134 On the basis that no additional mitigation measures are proposed there is no change to the determined effects.

SUMMARY OF EFFECTS

8.135 Table 8-9 below summarises the significance of each impact pre and post-mitigation.

<table>
<thead>
<tr>
<th>Impact</th>
<th>Pre-Mitigation Significance</th>
<th>Suggested Mitigation</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise & Vibration</td>
<td>Negligible</td>
<td>Continuation of existing operation and management practice</td>
<td>Negligible</td>
</tr>
<tr>
<td>Dust & Dirt</td>
<td>Negligible</td>
<td></td>
<td>Negligible</td>
</tr>
<tr>
<td>Driver Severance & Delay</td>
<td>Negligible</td>
<td>n/a</td>
<td>Negligible</td>
</tr>
<tr>
<td>Community Severance & Delay</td>
<td>Negligible</td>
<td>n/a</td>
<td>Negligible</td>
</tr>
<tr>
<td>Road Safety</td>
<td>Slight</td>
<td>n/a</td>
<td>Slight</td>
</tr>
<tr>
<td>Vulnerable Road Users</td>
<td>Slight</td>
<td>n/a</td>
<td>Slight</td>
</tr>
</tbody>
</table>

8.136 The above summary demonstrates that the impacts would be classed as negligible/slight and therefore no mitigation measures, over and above that already employed as part of the safe and efficient operation of the site, would be necessary.

CONCLUSIONS

8.137 This Chapter of the ES assesses the potential impacts of the proposed application in terms of traffic and transportation.
8.138 The background highway conditions have been reviewed and it has been determined that there are currently no issues in terms of highway safety or operation.

8.139 The proposals do not seek to increase or alter the patterns of the vehicular trip generation of the site, just to continue the approved operations for a further period of ten years.

8.140 In view of the above, the residual impact of the proposed operation of the site would be negligible and does not result in an unacceptable impact on road or junction capacity, driver delay, road safety or amenity; by virtue of this, the application proposal is acceptable in traffic and transport terms.